C2-C3	1.375 (8)	C19-C18	1.36 (2)
C3-C6	1.495 (9)	C19-C22 ${ }^{\text {ii }}$	1.53 (2)
C4-C3	1.378 (9)	C20-C19	1.32 (1)
$\mathrm{N} 1-\mathrm{Cd}-\mathrm{N} 2$	91.1 (2)	C9-C8-C7	124.0 (7)
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	124.1 (6)	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Cd}$	120.3 (4)
$\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	123.7 (6)	C10-C9-C8	121.6 (7)
N2-C11-C12	122.7 (8)	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Cd}$	123.6 (5)
$\mathrm{N} 3-\mathrm{Cl} 3-\mathrm{Ni}$	178.2 (6)	$\mathrm{Cl1}-\mathrm{N} 2-\mathrm{C} 10$	116.2 (7)
N3-Cd-N1	90.2 (2)	$\mathrm{C} 12-\mathrm{C} 8-\mathrm{C} 7$	121.4 (7)
$\mathrm{N} 3-\mathrm{Cd}-\mathrm{N} 2$	90.9 (2)	C12-C8-C9	114.5 (7)
$\mathrm{N} 4-\mathrm{Cl4-Ni}$	179.1 (5)	$\mathrm{C} 13-\mathrm{Ni}-\mathrm{Cl} 4$	89.0 (2)
$\mathrm{Cl}-\mathrm{Nl}-\mathrm{Cd}$	121.7 (4)	C13-N3-Cd	164.2 (5)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	114.7 (6)	C16-C15-C20	124.5 (7)
C2-C3-C4	115.1 (6)	C16-C17-C18	123.4 (9)
C2-C3-C6	124.9 (6)	C17-C16-C15	114.3 (8)
C3-C2-C1	120.3 (6)	C17-C18-C19	121.1 (9)
C3-C6-C7 ${ }^{\text {i }}$	117.4 (6)	C18-C19-C22 ${ }^{\text {ii }}$	119.7 (8)
C4-C3-C6	120.0 (6)	C19-C20-C15	116.8 (7)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	124.3 (7)	C20-C19-C18	119.8 (8)
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Cd}$	123.5 (4)	$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 22{ }^{\text {ii }}$	120.5 (8)
C5-C4-C3	121.5 (6)	$\mathrm{C} 21-\mathrm{C} 15-\mathrm{C} 16$	117.4 (9)
C8-C7-C6 ${ }^{\text {iii }}$	115.4 (6)	$\mathrm{C} 21-\mathrm{C} 15-\mathrm{C} 20$	118.0 (9)
C8-C12-Cl1	121.2 (7)		
$\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-0.5 (9)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6$	176.5 (7)
$\mathrm{Ni}-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	-1.8(9)	C4-C3-C6-C7	-164.3 (7)
$\mathrm{Cd}-\mathrm{N} 1-\mathrm{Cl}-\mathrm{C} 2$	-178.0 (5)	C5-C4-C3-C6	-175.6 (7)
$\mathrm{Cd}-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	179.1 (6)	C6 ${ }^{\text {iii }}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	-126.8 (8)
$\mathrm{Cd}-\mathrm{N} 2-\mathrm{C} 11-\mathrm{Cl2}$	-177.1 (8)	C7-C8-C9-C10	-177.9 (7)
$\mathrm{Cd}-\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$	178.5 (6)	C7-C8-C12-Cl1	179.3 (9)

Symmetry codes: (i) $x, y-1, z$; (ii) $1-x,-y,-z$; (iii) $x, 1+y, z$.

Data collection and cell refinement were performed using CAD-4-PC software (Enraf-Nonius, 1993). MolEN (Fair, 1990) was used for data reduction. Absorption coefficients were taken from International Tables for Crystallography (1992, Vol. C, Table 4.2.4.2). The structure was solved by Patterson heavy-atom methods using SHELXS86 (Sheldrick, 1990), which revealed the positions of the Cd and Ni atoms. Refinement was carried out by full-matrix least-squares methods using MolEN (Fair, 1990). H atoms, except those of the Guest molecule, were located from difference Fourier maps and refined isotropically. The H atoms of the Guest molecule were placed geometrically and refined by the riding method. The C15-C21 bond length was restrained to have a reasonable value. Positional disorder of the Guest atoms was not found. Molecular graphics were prepared using ORTEPII (Johnson, 1976) and the material for publication was prepared with SHELXL93 (Sheldrick, 1993).

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Referencc: KAll43). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

References

Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands. Hasegawa, T. \& Iwamoto, T. (1988). J. Incl. Phenom. 6, 143-156.
Hashimoto, M., Kytazawa, T., Hasegawa, T. \& Iwamoto, T. (1991). J. Incl. Phenom. Mol. Rec. Chem. 11, 153-158.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kuroda, R. \& Sasaki, Y. (1974). Acta Cryst. B30, 687-690.
Nishikiori, S. \& Iwamoto, T. (1983). Bull. Chem. Soc. Jpn, 56, 32463252.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Yuge, H. \& Iwamoto, T. (1992). J. Incl. Phenom. Mol. Rec. Chem. 14, 217-235.

Acta Cryst. (1996). C52, 2427-2429

trans-Tetraaquabis $\left(N, N^{\prime}, N^{\prime \prime}\right.$-tricyanomelamine)cobalt(II) Hexahydrate

Brendan F. Abrahams,* Simon J. Egan,
Bernard F. Hoskins and Richard Robson

School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia. E-mail: abrahams@ rubens.its. unimelb.edu.au
(Received 14 December 1995; accepted 15 May 1996)

Abstract

The crystal structure of trans-tetraaquabis[1,3,5-triazine-2,4,6-tricarbodiimidato(1-)- N]cobalt(II) hexahydrate, $\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{9}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] .6 \mathrm{H}_{2} \mathrm{O}$, shows the cobalt(II) metal ion to be octahedrally coordinated by two trans doublyprotonated tricyanomelamine ligands and four water molecules. Hydrogen bonding between ligands yields a two-dimensional sheet structure.

Comment

Recent work has demonstrated that new extended networks may be constructed by linking metal centres through rod-like or slab-like ligands (Robson et al., 1992). The trianion of tricyanomelamine, tcmel ${ }^{3-}$, is a robust unit which is expected to offer a rich coordination chemistry given the number and variety of potential donor sites. Accordingly, the ligand was considered an ideal candidate for the construction of metal-ligand polymers. As part of a preliminary investigation of the ligand and its coordination chemistry, a cobalt(II) complex of the doubly-protonated ligand, $\mathrm{H}_{2} \mathrm{tcmel}^{-}$, was isolated as the $1: 2$ complex $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{tcmel}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$, (I).

(I)

The $\mathrm{Co}^{\mathrm{II}}$ atom lies on a centre of symmetry and is octahedrally coordinated by two trans H_{2} temel ${ }^{-}$ligands as shown in Fig. 1. Although the trianion possesses potential threefold symmetry, the ligands in the structure adopt a lower-symmetry arrangement. As indicated in Fig. 2, each H_{2} tcmel ${ }^{-}$ligand forms hydrogen bonds to two centrosymmetrically related ligands resulting in the formation of 8 and 12 -membered rings. From a topological viewpoint, each H_{2} tcmel ${ }^{-}$ligand may be considered as a triply-connecting centre forming links to three other ligands through hydrogen bonds and coordinate bonds. The resulting sheet possesses

Fig. 1. ORTEPII (Johnson, 1976) diagram of compound (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary size.

Fig. 2. ORTEPLI (Johnson, 1976) diagram showing the hydrogen bonding between molecules. Atoms are of arbitrary size and hydrogen bonds are indicated by open lines.
the same connectivity as a two-dimensional hexgaonal grid. Hydrogen bonding involving lattice water extends throughout the structure.

Despite the relatively planar nature of the ligand, the Co atom lies 0.684 (1) \AA out of the plane of the ligands. Analysis of the ligand geometry indicates extensive delocalization.

Experimental

The hydrated salt Na_{3} temel. $3 \mathrm{H}_{2} \mathrm{O}$ was prepared according to the literature method of Strassberger \& Wendlberger (1961). Crystals of (I) were obtained by carefully layering an ethanolic solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}(14.6 \mathrm{mg}$ in 14 ml$)$ on an aqueous solution of Na_{3} temel. $3 \mathrm{H}_{2} \mathrm{O}(15.1 \mathrm{mg}$ in 4.0 ml$)$ acidified with $\mathrm{HBF}_{4}\left(8.9 \times 10^{-3} \mathrm{M}\right)$. After 12 h , pale orange crystals suitable for crystallographic analysis formed at the bottom of the aqueous layer.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{9}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] .6 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=639.37$
Triclinic
$P \overline{1}$
$a=6.663(2) \AA$
$b=6.861(3) \AA$
$c=15.721(2) \AA$
$\alpha=93.16(3)^{\circ}$
$\beta=94.31$ (2) ${ }^{\circ}$
$\gamma=111.13(3)^{\circ}$
$V=665.8(4) \AA^{3}$
$Z=1$
$D_{x}=1.595 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4F
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
analytical, indexed crystal faces
$T_{\text {min }}=0.1312, T_{\text {max }}=$ 0.3927

3474 measured reflections
2743 independent reflections

Refinement
Refinement on F^{2}
$R(F)=0.0355$
$w R\left(F^{2}\right)=0.1006$
$S=1.084$
2743 reflections
232 parameters
All H-atom parameters
refined
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0714 P)^{2}\right. \\ & +0.1047 P]\end{aligned}$
$+0.1047 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=10.5-31.5^{\circ}$
$\mu=5.805 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped
$0.5 \times 0.5 \times 0.2 \mathrm{~mm}$
Pale orange

2728 observed reflections

$$
[I>2 \sigma(I)]
$$

$R_{\text {int }}=0.020$
$\theta_{\text {max }}=74.90^{\circ}$
$h=-1 \rightarrow 8$
$k=-8 \rightarrow 8$
$l=-19 \rightarrow 19$
3 standard reflections frequency: 120 min intensity decay: insignificant
$\Delta \rho_{\text {max }}=0.511 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.414 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.0136 (14)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Co	0	0	0	0.03247 (15)
N1	0.1254 (2)	-0.1208 (2)	-0.40919 (9)	0.0291 (3)
N2	-0.2178 (2)	-0.3233 (2)	-0.46806 (9)	0.0318 (3)
N3	-0.1666 (2)	-0.1890 (2)	-0.32340 (9)	0.0305 (3)
N4	0.0532 (2)	-0.2706 (2)	-0.55340 (9)	0.0343 (3)
N5	0.4308 (3)	-0.1303 (3)	-0.58812 (11)	0.0448 (4)
N6	-0.5071 (2)	-0.4085 (2)	-0.39117 (10)	0.0348 (3)
N7	-0.6882 (3)	-0.4157 (4)	-0.25941 (13)	0.0595 (5)
N8	0.1924 (2)	0.0130 (2)	-0.27037 (9)	0.0335 (3)
N9	0.0941 (3)	0.0406 (3)	-0.12382 (10)	0.0410 (4)
Cl	-0.0045 (2)	-0.2361 (2)	-0.47826 (10)	0.0276 (3)
C2	-0.2961 (3)	-0.3043 (3)	-0.39084 (10)	0.0285 (3)
C3	0.0444 (3)	-0.0998 (3)	-0.33228 (10)	0.0275 (3)
C4	0.2583 (3)	-0.1910 (3)	-0.56789 (10)	0.0321 (4)
C5	-0.5942 (3)	-0.4071 (3)	-0.31829 (13)	0.0386 (4)
C6	0.1288 (3)	0.0247 (3)	-0.19346 (11)	0.0322 (4)
Ol	0.1928 (3)	0.3137 (2)	0.04206 (11)	0.0513 (4)
O 2	0.2639 (3)	-0.0793 (3)	0.03380 (10)	0.0512 (4)
O3	0.3538 (2)	-0.0720 (3)	0.20893 (9)	0.0459 (3)
O4	-0.3540 (3)	0.3773 (3)	0.06728 (12)	0.0583 (4)
O5	0.1018 (4)	-0.4960 (3)	0.1794 (2)	0.0792 (6)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{O} 2$	2.062 (2)	N4-Cl	1.305 (2)
Co-N9	2.092 (2)	N4-C4	1.319 (2)
Co- Ol	2.107 (2)	N5-C4	1.149 (2)
N - -Cl	1.351 (2)	N6-C5	1.324 (2)
N1-C3	1.382 (2)	N6-C2	1.327 (2)
N2-Cl	1.355 (2)	N7-C5	1.148 (3)
N2-C2	1.375 (2)	N8-C6	1.319 (2)
N3-C2	1.331 (2)	N8-C3	1.319 (2)
N3-C3	1.337 (2)	N9-C6	1.143 (2)
$\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 9^{\text {i }}$	90.39 (7)	N4-C1-N1	127.07 (14)
$\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 9$	89.62 (7)	N4-C1-N2	116.91 (14)
$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 1$	88.10 (8)	$\mathrm{N} 1-\mathrm{Cl}-\mathrm{N} 2$	116.01 (14)
$\mathrm{N} 9-\mathrm{Co}-\mathrm{Ol}$	91.57 (7)	N6-C2-N3	124.72 (15)
$\mathrm{O} 2-\mathrm{Co}-\mathrm{Ol}^{\text {i }}$	91.90 (8)	N6-C2-N2	113.98 (15)
$\mathrm{N} 9-\mathrm{Co}-\mathrm{Ol}^{\text {i }}$	88.43 (7)	N3-C2-N2	121.30 (14)
$\mathrm{Cl}-\mathrm{NI}-\mathrm{C} 3$	121.43 (14)	N8-C3-N3	124.33 (15)
$\mathrm{Cl}-\mathrm{N} 2-\mathrm{C} 2$	122.01 (14)	N8-C3-N1	114.14 (14)
C2-N3-C3	117.62 (14)	N3-C3-N1	121.53(14)
$\mathrm{Cl}-\mathrm{N} 4-\mathrm{C} 4$	120.23 (14)	N5-C4-N4	173.7 (2)
C5-N6-C2	117.98 (15)	N7-C5-N6	173.6 (2)
C6-N8-C3	117.23 (14)	N9-C6-N8	173.4 (2)
C6-N9-Co	167.8 (2)		
Symmetry code: (i) $-x,-y,-z$.			

The structure was solved using the TREF routine in SHELXS86 (Sheldrick, 1990). Refinement was performed using SHELXL93 (Sheldrick, 1993). All non-H atoms were refined with anisotropic displacement parameters. H atoms were refined isotropically. The water H atoms were refined with a common $\mathrm{O}-\mathrm{H}$ separation. The tables were produced using SHELXL93.

The authors are grateful to the Australian Research Council for support.

[^0]
References

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Robson, R., Abrahams, B. F., Batten, S. R., Gable, R. W., Hoskins, B. F. \& Lui, J. (1992). In Supra-molecular Architecture, Synthetic Control in Thin Films and Solids, edited by T. Bein. Am. Chem. Soc. Symp. Ser. No. 499.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Strassberger, L. \& Wendlberger, G. (1961). German Patent No. 1112985.

Acta Cryst. (1996). C52, 2429-2432

Tetrakis(creatinine)platinum(II) Dithiocyanate

Josef Macíček, ${ }^{a}$ Galina Gencheva ${ }^{b}$ and Mariana Mitewa ${ }^{b}$
${ }^{a}$ Bulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Rakovski Str. 92, 1000 Sofia, Bulgaria, and ${ }^{b}$ Department of Chemistry, University of Sofia, J. Bourchier Avn. 1, 1126 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg

(Received 24 January 1996; accepted 13 June 1996)

Abstract

The structure of the title compound, tetrakis(2-amino-1,5-dihydro-1-methyl-4 H -imidazol-4-one- N^{3})platinum(II) dithiocyanate, $\left[\mathrm{Pt}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}\right)_{4}\right](\mathrm{SCN})_{2}$, consists of $[\mathrm{Pt}-$ (creat) $\left.)_{4}\right]^{2+}$ (creat is 2 -imino-1-methyl-4-imidazolidinone) complex cations possessing approximate D_{2} symmetry and thiocyanate anions. The Pt atom is coordinated in a square-planar manner by four creatinine ligands bonded through their endocyclic N atoms. The $\mathrm{Pt}-$ N bond distances range from 1.980 (6) to 2.034 (7) \AA. The creatinine molecules are planar and participate in inter- and intramolecular hydrogen bonds. The ligands are almost perpendicular to the equatorial PtN_{4} plane.

Comment

Recently, a number of structural papers on different Pt^{11}-creatinine complexes have appeared (Mitewa, Gencheva, Bontchev \& Macíček, 1988; Macíček, Angelova, Gencheva, Mitewa \& Bontchev, 1988; Beurskens, Perales, Martin-Gil \& Martin-Gil, 1988; Beja, Paixao, Martin-Gil \& Salgado, 1991; Gencheva et al., 1992). It was found that changing the reaction conditions led to the formation of different complex species, some of them being paramagnetic metal-metal-bonded and creatinine-bridged oligomers involv-

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1099). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

